Reproducing differentials and certain theta functions on open Riemann surfaces
نویسندگان
چکیده
منابع مشابه
Meromorphic Functions on Certain Riemann Surfaces
1. Throughout the paper we shall denote by R a Riemann surface. For a domain Í2 in P, we represent by AB(Q) the class of all the singlevalued bounded analytic functions on the closure Ü. For a meromorphic function / on a domain ß, we use the notation viw\f, Q.) to express the number of times that/ attains w in ß. Definition 1. We say that REWIb if the maximum principle suplen \fip)\ =sup3,ean \...
متن کاملComputing Riemann theta functions
The Riemann theta function is a complex-valued function of g complex variables. It appears in the construction of many (quasi-)periodic solutions of various equations of mathematical physics. In this paper, algorithms for its computation are given. First, a formula is derived allowing the pointwise approximation of Riemann theta functions, with arbitrary, user-specified precision. This formula ...
متن کاملMeromorphic Differentials with Twisted Coefficients on Compact Riemann Surfaces
This note is to concern a generalization to the case of twisted coefficients of the classical theory of Abelian differentials on a compact Riemann surface. We apply the Dirichlet’s principle to a modified energy functional to show the existence of differentials with twisted coefficients of the second and third kinds under a suitable assumption on residues. 1 Main results and discussion Let X be...
متن کاملIdeal Theory on Open Riemann Surfaces
Introduction. The theorems of the classical ideal theory in fields of algebraic numbers hold in rings of analytic functions on compact Riemann surfaces. The surfaces admitted in our discussion are closely related to algebraic surfaces; we deal either with compact surfaces from which a finite number of points are omitted or, more generally, with surfaces determined by an algebroid function. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kyoto Journal of Mathematics
سال: 1981
ISSN: 2156-2261
DOI: 10.1215/kjm/1250522112